Fully Discrete Energy Stable High Order Finite Difference Methods for Hyperbolic Problems in Deforming Domains: An Initial Investigation
نویسندگان
چکیده
A time-dependent coordinate transformation of a constant coefficient hyperbolic system of equations is considered. We use the energy method to derive well-posed boundary conditions for the continuous problem. Summation-by-Parts (SBP) operators together with a weak imposition of the boundary and initial conditions using Simultaneously Approximation Terms (SATs) guarantee energy-stability of the fully discrete scheme. We construct a time-dependent SAT formulation that automatically imposes the boundary conditions, and show that the numerical Geometric Conservation Law (GCL) holds. Numerical calculations corroborate the stability and accuracy of the approximations. As an application we study the sound propagation in a deforming domain using the linearized Euler equations.
منابع مشابه
Fully discrete energy stable high order finite difference methods for hyperbolic problems in deforming domains
A time-dependent coordinate transformation of a constant coefficient hyperbolic system of equations which results in a variable coefficient system of equations is considered. By applying the energy method, well-posed boundary conditions for the continuous problem are derived. Summation-by-Parts (SBP) operators for the space and time discretization, together with a weak imposition of boundary an...
متن کاملSummation-by-parts in time
We develop a new high order accurate time-integration technique for initial value problems. We focus on problems that originate from a space approximation using high order finite difference methods on summation-by-parts form with weak boundary conditions, and extend that technique to the timedomain. The new time-integration method is global, high order accurate, unconditionally stable and toget...
متن کاملSummation-By-Parts Operators for Time Discretisation: Initial Investigations
We develop a new high order accurate time-discretisation technique for initial value problems. We focus on problems that originate from a space discretisation using high order finite difference methods on summation-by-parts form with weak boundary conditions, and extend that technique to the time-domain. The new timediscretisation method is global and together with the approximation in space, i...
متن کاملStable High Order Finite Difference Methods for Wave Propagation and Flow Problems on Deforming Domains
We construct stable, accurate and efficient numerical schemes for wave propagation and flow problems posed on spatial geometries that are moving, deforming, erroneously described or non-simply connected. The schemes are on Summation-by-Parts (SBP) form, combined with the Simultaneous Approximation Term (SAT) technique for imposing initial and boundary conditions. The main analytical tool is the...
متن کاملA fully discrete, stable and conservative summation-by-parts formulation for deforming interfaces
We introduce an interface/coupling procedure for hyperbolic problems posed on time-dependent curved multi-domains. First, we transform the problem from Cartesian to boundary-conforming curvilinear coordinates and apply the energy method to derive well-posed and conservative interface conditions. Next, we discretize the problem in space and time by employing finite difference operators that sati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015